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A computational fluid dynamics (CFD)-based model of brush seals has been devel- 
oped and tested against other workers' experimental data. In the model, the brush is 
treated as an axisymmetric, anisotropic porous region with nonlinear resistance 
coefficients. The resistance coefficients are chosen through calibration against mea- 
surements. The CFD model gives predictions of f low rate, pressure distribution, 
velocity field, and bending forces on the bristles. The bristle forces are used in a 
separate calculation to estimate bristle bending and reaction forces on the shaft and 
backing plate. Bending in both the axial direction and the orthogonal plane are 
considered. 
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Introduction 
Brush seals offer significant benefits over conventional labyrinth 
seals in gas turbine engines and are currently the subject of 
considerable research and development work. Despite much ex- 
perimentation and the fact that brush seals have successfully 
operated in jet engines (Ferguson 1988) their behavior is far from 
fully understood. In this paper, a mathematical model is proposed 
that, it is believed, will reproduce many characteristics of actual 
brush seals. The model is useful in aiding understanding and in 
considering the effect of design or operating condition changes. 

A schematic of a brush seal is shown in Figure 1. It comprises 
a pack of wire bristles of diameter 0.076 mm clamped between a 
front plate (on the high-pressure side) and a backing ring. The 
bristles are inclined in tile orthogonal ( r -0 )  plane at a lay angle 
~b (typically 45 °) to the shaft tangent. Design variables include 
bristle and backing ring dimensions, bristle material, pack thick- 
ness, lay angle, bristle packing (as influenced by method of 
manufacture), and degree of interference or clearance fit. Impor- 
tant characteristics of the seal include leakage flow rates, pres- 
sure-bearing capacity, :service life, and tolerance to relative 
movement of the rotor and stator during operation. Published 
experimental evidence suggests that this is a complex problem 
involving coupling of aerodynamic forces, bristle bending, and 
contact forces. The paper by Chupp and Holle (1994) is recom- 
mended to readers for a bibliography of published work on brush 
seals. 

Publications on mathematical modeling of brush seals have 
focused mainly on aerodynamic effects and fall into two cate- 
gories; full computational fluid dynamics (CFD) calculations of 
flow through the pack; or porosity models in which a resistance 
law is assumed for the "average flow" through the pack. An 
example of the full CFD approach is given by Braun and 
Kudriavtsev (1995). Two-dimensional (2-D), laminar, incom- 
pressible conditions are assumed, and the flow in the cross 
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section through an array of fixed circular pins is calculated. Some 
qualitative agreement with flow visualization on a large-scale 
experimental model is shown. Pressure differences across the 
array show discrepancies of order 20% between calculation and 
measurement. 

An example of the porosity-type approach is given by Dowler 
et al. (1992). This is an essentially one-dimensional (l-D) treat- 
ment with the flow resistance estimated from work on cylindrical 
bodies in cross flow. Some encouraging correlations of seal flow 
data are achieved. In a similar spirit, but differing considerably in 
detail, Hendricks et al. (1991) have developed a bulk flow model 
based on results for porous media and filters. These workers also 
estimated bristle bending by applying standard cantilever beam 
theory to an isolated single bristle. This is representative of 
published work on bristle bending to date. 

Bayley and Long (1993) have presented an axisymmetric, 2-D 
model (which they attribute to unpublished work by Owen). 
Although not entirely clear from the paper, this model is equiva- 
lent to treating the brush as an anisotropic, Darcian, porous 
medium. The authors' "porosity value" is the ratio of resistance 
coefficients in orthogonal directions. To match pressure measure- 
ments on the backing plate, this parameter was typically given a 
value of 30, indicating considerable anisotropy. This is an impor- 
tant result; although, given the nature of the bristle pack, it may 
not be surprising. 

In the model proposed here, the brush is treated as an 
anisotropic, porous medium with nonlinear resistance coeffi- 
cients. The equations are solved using conventional CFD tech- 
niques with the porous region embedded in the solution domain. 
This enables interaction with flow upstream and downstream of 
the pack to be captured. Aerodynamic forces from this calcula- 
tion are used in a bending model that includes interaction be- 
tween rows of bristles. 

Flu id  d y n a m i c s  m o d a l  

The CFD code used here is based on the algorithm described by 
Moore (1985) and has been applied to many turbomachinery 
flows (see, for example, Northall et al. 1987). In this code, the 

Int. J. Heat and Fluid Flow 16: 493-500, 1995 
© 1995 by Elsevier Science Inc. 
655 Avenue of the Americas, New York, NY 10010 

0142-727X/95/$10.00 
SSDI 0142-727X(95)00061-T 



Mathematical modeling of brush seals: J. W. Chew et al. 

governing equations are discretised by integration over a set of 
control volumes using linear interpolation rules. The discretised 
equations are iterated toward convergence using the SIMPLER 
algorithm as described by Patankar (1980). 

In flow regions outside the brush, the Reynolds-averaged 
Navier-Stokes equations with a turbulence model are assumed, 
as is usual in aerodynamic codes. These equations express con- 
servation of mass and momentum and may be written as follows: 

V. (OU) = 0 (1) 

pu. Vu = v .  ~eVU + V" 0,eVU ~ -  Vp (2) 

where compressibility effects in the viscous terms are taken to be 
negligible. In these equations p, ixe, p, and u denote fluid 
density, effective viscosity, pressure, and velocity vector, respec- 
tively. Here the equation for conservation of energy is approxi- 
mated by a uniform stagnation temperature condition. Note that 
for adiabatic surfaces and a nonrotating shaft (as is considered 
below), the bulk stagnation temperature of the air will remain 
constant, because there is no work or heat input to the system. 
Variations in stagnation temperature will occur within shear 
layers in the fluid, but, from comparison with established bound- 
ary layer theory (e.g., Schlichting 1979), these are expected to be 
reasonably small for the conditions considered and are neglected 
in the present model. 

The perfect gas law and a mixing length model of turbulence 
are also assumed. Boundary-layer thicknesses needed for the 
mixing length calculations are obtained using a vorticity-based 
test function. In the outer part of the boundary layer, the mixing 
length is set to 0.08 times the boundary-layer thickness. In the 
inner region of the boundary layer, the mixing length is first set 
to 0.41 times the distance from the wall and then multiplied by a 
van Driest damping factor. 

To model the brush extra source terms (or body forces), 
representing the drag exerted on the fluid by the bristles, are 

included in the momentum conservation equations. For the as- 
sumed anisotropic, nonlinear resistance law we have the follow- 
ing: 
Resistance force per unit volume: 

Fr = - ~ f ~ u  - B0 lu lu (3) 

where A and /~ are the viscous and inertial resistance tensors. 
For the flow within the brush, the model equations are given 

by Equations 1 and 2 with the extra resistance forces from 
Equation 3 added to the right-hand side of the momentum 
conservation Equation 2. In the study of porous media, it is quite 
usual to neglect the inertial terms on the left-hand side and the 
viscous shear stress terms on the right-hand side of Equation 2, 
leaving a balance between the pressure gradient and porous 
resistance terms. These terms have not been neglected here, to 
retain a more complete model (and for convenience of program- 
ming). Note, however, that with the present choice of effective 
viscosity in the brush region, the shear stress terms are not 
properly modeled. Simple order-of-magnitude estimates indicate 
that the viscous terms will have little effect in this application. 

Consider now the linear resistance term involving the tensor 
A-. (For an isotropic, Darcian medium, this would be a diagonal 
tensor with equal elements, and the nonlinear resistance term 
would be zero.) We expect A to be symmetric with principal 
axes in the directions normal to the bristles in the r -0  plane, 
parallel to the bristles and parallel to the axial direction. Note that 
a pressure gradient aligned with any of the principal axes will 
produce motion in that direction only. In general, in an anisotropic 
porous medium, the velocity may not be in the direction of the 
pressure gradient. Defining a,, as, and az to be resistance 
coefficients in the principal directions, the elements of A (de- 
n o t e d  aij) have the following form in the natural cylindrical 
coordinate system for the problem (r, 0, z). 

Notation 

ai,j 

an, as, az 

Aiy 
bi,~ 
b,, b s, b z 

E 
F, 

//i,i 
I 
l 
M 
P 
Pd 
P, 
P 
r 
R 

viscous resistance tensor components 
principal viscous resistance coefficients, normal 
to bristles in r -0  plane, parallel to bristles, and in 
axial direction, respectively 

viscous resistance tensor 
bending coefficients, Equation 10 
inertial resistance tensor components 
principal inertial resistance coefficients, normal to 
bristles in r -0  plane, parallel to bristles, and in 
axial direction, respectively 

inertial resistance tensor 
modulus of elasticity 
point force on bristle 
resistance force per unit volume 
reaction forces from upstream bristle row 
moment of inertia 
bristle length 
bending moment 
static pressure 
downstream pressure 
upstream pressure 
inclined prop force 
radial coordinate 
reaction force from downstream bristle row or 
radius of beam cross section 

Rp 
s 

S. 
Sr 
n 

W 
x i 
x 

Y 
Yk 

z 

Greek 

Al  
0 
IX 
P 
4, 

Subscripts 

e 
j , i  
oh 
t 

pressure ratio = Pu/Pd 
maximum fiber stress 
shaft reaction component normal to bristle 
shaft reaction force (in radial direction) 
velocity vector 
aerodynamic force 
point on bristle 
distance along bristle length (from tip) 
normal bristle deflection 
normal bristle deflection caused by point force at 
X = X  k 
axial coordinate or normal bristle deflection at tip 

angle between bristle and backing ring face 
change in projected length 
tangential coordinate 
viscosity 
density 
bristle lay angle 

effective 
bristle row j, location x = x i 
denotes location of backing ring edge 
turbulent 
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Figure 1 Schematic of brush seal (dimensions in mm) 

arr = a s sin 2 ~b + a ,  co,; 2 ~b, at0 = ( a ,  - a s )  sin dp cos dp, 

arz = 0 

a0r = a,0, aoo = a  s cos 2 ~ b + a  n sin e ~b, a o z = 0  

azr = O, azo = O, azz  = a z (4) 

where the two coordinate systems are defined as shown in Figure 
lb. From Equations 3 and 4 it is clear that pack anisotropy leads 
to coupling of the radial and tangential momentum equations. 
This coupling underlies the blow-down effect that is be discussed 
later. 

The form of the inertial Term in Equation 3 has been chosen 
as a simple extension of the well-established resistance law for an 
isotropic porous medium. It should be noted that alternative 
formulations of this nonlinear term are admissible and that 
further work would be required to establish the most appropriate 
form. 

It is assumed that the,, inertial resistance tensor B has the same 
form as A. Thus, there are a total of six resistance coefficients 
a s, a , ,  a z, b s, b,, and b.z to be defined. In the computations here, 
it is assumed that a ,  = a z, b, = b~, and all coefficients are 
uniform throughout a bristle pack and do not vary with pressure 
difference across the seal. The choice of the remaining four 
constants is described in the Results. 

Mathematical modeling of brush seals: J. W. Chew et aL 

A typical solution domain and calculation mesh is shown in 
Figure 2. Boundary conditions on solid walls are given by the 
usual no-slip, no-penetration assumptions. Essentially, at the 
inlet, total pressure and flow angle are specified, and at the 
outlet, static pressure is specified. Some special treatment was 
needed to suppress any flow reversal at inlet and exit during the 
calculation; this had negligible effect on the results in the region 
of the seal. Some difficulties were encountered with convergence 
of the iterative solution in the vicinity of the seal. These were 
overcome using relaxation and employing a fixed control volume 
pattern with artificial viscosity to damp oscillations [as opposed 
to the upwinded control volumes described by Moore (1985)]. 

B r i s t l e  b e n d i n g  m o d e l  

The aerodynamic force on the bristles is equal in magnitude but 
opposite in direction to the drag exerted on the fluid by the 
bristles. Hence, once a converged CFD solution has been 
achieved, the aerodynamic forces on the bristles may be obtained 
from Equation 3. The two components of interest for the bending 
calculations are those in the axial direction, e z • Fr, and normal to 
the bristles in the orthogonal plane, e , - F  r, where e denotes a 
unit vector in the direction of the subscript. Noting that in the 
cylindrical coordinate system e ,  = (cos qb, sin dp, 0), these two 
components of force per unit volume are obtained on the CFD 
calculation mesh. Using bilinear interpolation and a specified 
bristle-packing density, the forces acting on the bristles are then 
estimated. The forces will vary along the bristle length and 
axially through the pack. In this section, we describe how the 
aerodynamic forces are used to estimate bristle bending. 

In this model, first-order bending theory is used, assuming 
that the bristle deflections are much smaller than the bristle 
length. This is considered sufficiently accurate for our present 
purposes and greatly simplifies the problem. To this level of 
approximation, the axial deflections are independent of the forces 
and deflections in the r - 0  plane. For the bending in the r - 0  
plane, account is taken only of the axial forces only through the 
inclined prop effect (which is described later). Frictional and 
packing effects that introduce further coupling are neglected in 
the present paper. 

The axial and orthogonal plane bending calculations are de- 
scribed separately below. As a precursor to this, some results 
from standard cantilever beam theory are first given. 

Canti lever beam theory 

The equation underlying the model is that for the flexion of a 
straight beam. This can be found in many text books (e.g., Roark 
1954) and is written as follows: 

dey 
E I - ~ x  2 = M (5) 

where E denotes modulus of elasticity, I is the moment of inertia 
of the cross section ( =  "n'R4/4, for a circular cross section beam, 
radius R), x is distance along the bristle, y is the deflection 
(normal to the bristle), and M is the bending moment in the 
plane considered. Here, we take x = 0 at the free end of the 

Figure 2 Typical computational mesh 
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bristle, and at the fixed end x = 1, we have the following 
boundary condition 

dy 
y = - -  = 0 at x = 1 (6) 

dx 

In the present problem, aerodynamic forces act along the 
length of the bristle, and there are contact forces with the backing 
plate and shaft, and between bristles. The problem may be 
discretised by defining a number of nodes at locations x i along 
the length of the bristle and approximating all the forces on the 
bristle by point forces F~ at the nodes. The bending moment M 
is then given by 

M(x)  = Y'. F i ( x - x i )  (7) 
Xi<=x 

From the linear nature of the problem, it follows that we can 
use the principle of superposition. If yk(x) is the solution of 
Equation 5 with boundary condition 6 for a single force F k acting 
at x = x k, then y = Y'-Yk gives the solution of the multiple force 
problem defined by Equation 7. The compound solution also 
satisfies boundary condition 6. The solution for Yk is straightfor- 
ward to derive and is given in standard texts; it may be written as 
follows: 

I Fk [ ( l _ x k ) 2 ( 2 l + x k ) _ 3 ( l _ x k ) 2 x ]  

for O < x < x  k 

Y*= F, [x3 3XkXe+3(2Xk_I)Ix+12(2I_3xk)]  

for xk <x <_l 

(s) 
Using superposition, it may then be deduced that the solution 

of the problem defined by Equations 5, 6, and 7 at x = x~ is 
given by the following: 

y( x = xi) = ~_,ai,kFk/6EI (9) 
k 

where 

[ ( l -  xk)2(21 + xk) - 3 ( l -  xk)Zxi] 

if x k > x i 
Ai.k= [x3i _3xkx2 + 3 (2x t_ l ) i x i+12(2 l_3xk ) ]  (10) 

if x k < x i 

It may be noted that the deflection at x = x~ due to the force 
at x = x k is Ai,kFk/6EL 

The small deflection theory also gives estimates of the maxi- 
mum fiber stress s and change in projected length of the beam 
due to bending A l. The appropriate formulae are given by Roark 
(1954) and may be written as follows: 

s = 4M/'trR 3 (11) 

A l = l f o ' ( d Y ) ;  ~ x ]  dx (12) 

Axial bending calculations 

Suppose that the bristle pack consists of m circumferential rows 
of bristles, the rows being equally spaced in the axial direction, 
and, in the absence of aerodynamic forces, the bristles in adjacent 
rows lightly touching. With axial symmetry and n calculation 

Axial component 
of aerodynamic 
force 

w, 

Reaction force 
from upstream 
bristle 

Hj 

Figure 3 

Flow direction 

. . . . .  ] 1  - -  - 

. . . .  p . . . .  

- - -  - -  - - - t  

- - -  - -  - - - a  

Bristle Bristle Bristle 
j , l  j j-1 

Axial bending forces on bristle j 

Reaction force 
from downstream 
bristle 

points along the length of a bristle, the disretized problem 
reduces to finding deflections and forces at n × m solution 
points. If values at the radial position i for a bristle in row j 
(increasing in the upstream direction from j = 1 for the down- 
stream row) are denoted by subscript j, i, the following forces 
may act at each solution point: Wj i, aerodynamic loads at each 
point; Rj, i, reaction force from the' downstream row (or backing 
ring if j = 1) at location j -  1; Hi, i, reaction force from the 
upstream row j + 1 (if one exists). These forces are illustrated in 
Figure 3. 

The aerodynamic forces are obtained from the CFD solution 
as outlined above. Reaction forces and deflections (yj, i) must be 
calculated at each point. Frictional forces have been neglected in 
the axial bending model. 

From the condition that when bristles touch there is an equal 
and opposite reaction force on the two bristles, it is straightfor- 
ward to relate H/, i to R j+ 1,i and eliminate H from the problem. 

Bristle rows are assumed not to cross, and, where adjacent 
rows separate, there can be no reaction forces. Hence, the follow- 
ing constraints must be satisfied: 

R L i = 0  if YJ-I'i>YLil for 
2 < j < m  

Yj-I . />yj , i  J = = (13) 

With the backing ring fixed, the downstream row is subject to 
the following constraints 

RI, i = 0 for i ~ ioh 

0 > Yl,i ) for i > ' (14) 
R1, i = 0 if 0 > Yl,i t°h 

where 1 ~< i < ioh gives the portion of the bristle overhanging the 
backing ring. 

Applying the first-order cantilever beam theory to the bristles, 
Equation 9 gives the following: 

Yj,i = ~.~ai,k(WLk + Rj,k + Hp, ) /6EI  (15) 
k 

where the coefficients Ai ,  k are given by Equation 10. Thus, if 
Hi, i is eliminated, as described above, the problem is to find Yj, i 
and Ry i, so that Equation 15 with the constraints 13 and 14 are 
satisfieci. 

An iterative solution method is used in which an error func- 
tion is defined at each node, and the reactions are successively 
adjusted until a specified tolerance is reached. For the examples 
given later, satisfactory converged solutions were obtained in a 
few minutes CPU time on on Amdahl 5990-1400. 
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Bending in the orthogonal plane 

For bending in the r -0  plane, two limiting cases are considered. 
These assume that either the rows of bristles can move indepen- 
dently without resistance from adjacent rows, or that the bristle 
pack moves as one, with adjacent rows locked together, as far as 
normal movements are concerned. We refer to the former case as 
the frictionless model and the latter case as the bulk model. In the 
theory and results presented here, no account is taken of friction 
between the bristle pack and the backing ring edge, although 
extension to include this is straightforward. Bristle reactions 
against the shaft are also calculated assuming frictionless contact 
(although, again, the extension to include a simple frictional 
model is straightforward:). 

It is assumed that the bristles can slide freely against each 
other in their lengthwise direction. Hence, in the bulk model, 
reactions between the bristles act so as to produce equal bending 
forces on each bristle, bnt bristle stiffness is not affected. Averag- 
ing the aerodynamic forces over the volume of the bristle pack 
gives the appropriate forces for the bulk model. Further forces 
must be considered at the backing ring edge and at the bristle tips 
when they contact the shaft. 

At the backing ring edge, the inclined prop effect gives a 
force in the r -0  plane, which tends to close the bristle to shaft 
clearance. This force arises from the combined effect of the 
bristle lay angle and the axial deflection of the bristle. Denoting 
this force by P, we have the following from Rees (1988); 

P = R  tan 13/tan d o (16) 

where R is the axial reaction at the backing ring edge, 13 is the 
angle between the bristle and the backing ring face (=  0 when 
there is no axial deflection), and do is the bristle lay angle as 
usual. In the bulk model, this force is averaged over all the 
bristles; whereas, in the frictionless model, it is applied only to 
the downstream bristle row. The inclined prop force will be small 
relative to the axial forces. However, aerodynamic forces in the 
r -0  plane are also smaller than the axial forces, and so the 
inclined prop effect may be significant for r -0  plane bending. 

If the bristle tip cont~tcts the shaft, then a reaction force on the 
shaft is generated. This force is obtained from the restriction on 
shaft deflection at this point. To satisfy this condition, a point 
force S ,  acting normal to the bristle may be required. Because, 
for frictionless conditions, the shaft reaction S~ must be normal 
to the shaft surface, we obtain 

S~ = S , / C O s  do (17) 

S, has units of force; to obtain the average pressure on the shaft it 
is necessary to multiply by the number of bristles per unit area in 
the 0-z plane. 

Solutions of the brisde-bending equations for the frictionless 
model are obtained using Equation 9. Compared to the axial 
bending calculations, the r -0  plane bending calculations are 
computationally very quick. 

R e s u l t s  

Correlation of the model against Bayley and Long's (1990, 1993) 
experimental data for the seal shown in Figure 1 (with a 0.25mm 
interference fit) is described in the subsection Choice of resis- 
tance coefficients. Some further predictions from the model are 
then presented in later subsections. 

In the calculations presented in the following subsections, 
typical CFD meshes used had 76 axial and 48 radial grid 
locations. The bending calculations used similar step sizes along 
the length of the bristle to those in the CFD calculation. Eight 
rows of bristles and a pack thickness of 0.61mm were assumed. 
Fluid and material properties were chosen to approximately 

Mathematical mode/ing of brush seals: J. W. Chew eta/. 
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Comparison of calculated and measured backing 
ring pressures for the 0.25ram interference seal: (a) pressure 
ratio = 1.5; (b) pressure ratio = 3.0 

match experimental conditions. Shaft rotation is not included in 
these calculations or in the experiments to which the data is 
compared. 

A mesh dependency test was conducted for one example. For 
conditions corresponding to the interference seal at a pressure 
ratio of 3, a solution was obtained on a grid with 85 axial and 79 
radial locations. Compared to the standard mesh, this mesh had 
twice the number of grid locations in both directions within the 
bristle pack. Some mesh dependency was found. For example, 
mass flow, pressure exerted by the bristle pack on the shaft 
(according to the bulk model), and maximum axial bristle deflec- 
tion were found to differ by 4%, 12%, and 4%, respectively, 
between the two calculations. Although not insignificant, the 
level of numerical inaccuracy indicated was considered accept- 
able for an initial evaluation and demonstration of the model. 

Choice of resistance coefficients 
As stated above, the four resistance coefficients a z ,  b z ,  a s,  and 
b s must be specified in the CFD calculation. These have been 
obtained through comparison with Bayley and Long's (1990, 
1993) flow rate and backing ring pressure measurements. Mass 
flow rates are principally controlled by the axial resistances a z 

a n d  bz ,  while backing ring pressures depend mainly on the 
degree of anisotropy. This methodology is similar to that adopted 
by Bayley and Long. In the present notation, Bayley and Long's 
model corresponds to b s = b ,  = b z = O, a ,  = a z. A typical value 
of the anisotropy coefficient assumed by Bayley and Long is 30; 
for the present notation this gives a z = 59a~. 

The effect of assuming various values of a s and b s on the 
backing ring pressure distribution is illustrated in Figure 4. For 
all calculations in this figure, a z = 5.317 × 1011 m -2, and b z = 
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0.25mm Interference Seal 
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1.998 × 106 m -1. It is clear from this figure that, in order to 
match the measurements, the porous region must be highly 
anisotropic. It was found that a~ = 60a s with b~ = 0 gave the 
best fit to the measurements (of the values tried). Setting b~ = 0 
implies no inertial resistance in the direction of the bristles and is 
justified, to some extent, by the relatively straight flow path 
available in this direction compared to the tortuous path that the 
gas must follow as it traverses the bristle pack axially. Within the 
limits of the homogeneous porosity treatment, the level of agree- 
ment attained between the model and experimental data is consid- 
ered reasonable. It may also be noted that the backing ring 
pressure measurements are subject to some scatter. (The lines 
joining Bayley and Long's (1990) datapoints are included as 
visual aids only.) 

The calculated and measured mass flow characteristic for this 
seal is shown in Figure 5. Good agreement is evident for the 
present model. For the linear (Bayley and Long 1993) model, the 
agreement is not so good. In the calculations shown in Figure 5, 
and in all further interference seal predictions described below, 
the following resistance coefficients have been assumed. 

a~ = a,, = 60a s = 5.317 X 1011 m -2,  

b~ = b,, = 1.998 × 106 m 1, b s = 0 

It can be noted that, in Figure 5, extrapolation of the present 
results to R e = 1 might appear to give a nonzero flow rate at this 
point. Although the numerical studies have not been extended to 
Rp < 1.5, it may be shown from a one-dimensional ( l-D) analysis 
that, with the above values of a~ and b~, a steepening in gradient 
of the mass flow-pressure ratio curve is to be expected as Rp 
approaches unity. 

Fluid dynamics 

Examples of the predicted velocity field in the vicinity of the seal 
are given in Figure 6. Consider first Figure 6a, which gives 
results for the seal in Figure 1 running with 0.75mm clearance, at 
a pressure ratio of 1.5 and atmospheric conditions downstream. 
Because the bristle pack is assumed to be undisturbed in these 
calculations, the resistance coefficients are as for the interference 
seal above. These vector plots show that the leakage occurs 
predominantly through the clearance in these circumstances. Flow 
in the bristle back is relatively weak and is radially inward. 
Consistent with this flow pattern and experimental observation 
(Ferguson 1988) aerodynamic forces tend to bend the bristles 
toward the shaft in this solution. This is sometimes called the 
blow-down effect. 

Figure 6b gives the velocity field for the same conditions as 
Figure 6a, except that the bristle pack is assumed to be fully 
blown down. (In this case, the resistance coefficients have been 

adjusted to give better agreement with experimental leakage 
rates.) This flow pattern is also representative of interference fit 
seals. Note the strong 2-D effects and the radially inward flow in 
front of the backing ring. 

Bristle bending 

Examples of the bending predictions, from the frictionless model, 
are shown in Figure 7, for the interference fit seal at pressure 
ratio Rp = 4. Despite the fact that bending forces in the axial 
direction are considerably larger than those in the r -0  plane, the 
results show that axial deflections are comparatively small. This 
is because of the propping effect of the backing ring. The bristles 
tend to pivot against the backing ring edge and move away from 
the backing ring face at higher radii. This behavior may lead to 
high flow resistance in the pack near the backing ring edge, and 
low resistance in front of the backing plate at higher radii. The 
measured pressure distributions in Figure 4 appear consistent 
with this interpretation. 

The r -0  plane bristle deflections in Figure 7b indicate that the 
upstream bristles depart little from the curvature produced by the 
interference fit. The aerodynamic bending forces become pro- 
gressively stronger moving downstream through the pack - -  
tending to press the bristle tips against the shaft and produce 
more bending. For the downstream bristle row, the aerodynamic 

Bristles 

\ \ \ \  

Backing 

Ring I i 

(a) 0 .75mm bristle-to-shaft clearance 

Bristles 

- r  

/ 
~, / Backing 

I I  . . . .  .... 

. ,F - 7 ; F  ; ' ~  
(b) Bristles contacting shaft 

Figure 6 Veloci ty  vectors for 0.75 m m  bui ld clearance seal in 
open and b lown-down  condi t ions,  pressure ratio = 1.5; (a) 0.75 
m m  brist le-to-shaft clearance; (b) bristles contact ing shaft 
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and inclined prop forces combine to produce noticeably stronger 
bending of these bristles. 

Further predictions from the bulk-bending model for the 
interference seal are presented in Figure 8. These results are 
intended both to illustrate the capability of the model and to 
summarize the predictions for some important parameters. In the 
r -0  plane bending calculations (for estimation of shaft pressure), 
the bulk bending model was assumed. 

Shaft pressures, shown in Figure 8a, will have an important 
influence on bristle and shaft wear. The figure shows that, for the 
interference seal, the shaft pressure may rise well above the level 
caused by the interference fit. This is readily attributed to aerody- 
namic and inclined prop forces. The inclined prop effect becomes 
more important (relative to direct aerodynamic forces) at higher 
pressure differences, and accounts for the nonlinear form of the 
curve at a pressure difference of 500 kPa. Note that, although an 
average shaft pressure for the pack has been presented here, 
significant variations occur between the bristle rows. This is 
illustrated by the bristle bending curves in Figure 7. 

Figure 8b gives maximum axial deflections, which occur at 
the downstream bristle tips. One point to note from these results 
is that for the (small) deflections indicated the change in pro- 
jected length of the bristle given by Equation 12 will also be very 
small. Hence, the axial bending will not directly lead to signifi- 
cant lift-off of bristles from the shaft for these conditions. 

Conclusions 

The objective of producing a mathematical model for brush seals 
has been achieved. Predictions from the model are in agreement 
with experimental observations, and use of the model has already 
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Figure 7 Bending predictions, 0.25 mm interference seal, 
pressure ratio = 4.0: (a) axial bending; (b) orthogonal plane 
bending 
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Figure 8 Summary of bending calculations for the 0.25ram, 
interference seal: (a) shaft pressure; (b) maximum axial deflec- 
tion 

considerably improved our understanding of brush seal behavior. 
Compared to other published models, the present model is con- 
sidered a major advance. There are many interesting aspects of 
the predictions from the model, and some of these have been 
presented here. 

This study confirms the need for an anisotropic treatment of 
the bristle pack and shows the (circumferentially averaged) flow 
in the pack to be highly 2-D. A nonlinear porous resistance law 
has been shown to give better agreement with measurements than 
the linear, Darcian treatment. The form of the resistance law used 
here has been chosen fairly arbitrarily, and the resistance coeffi- 
cients have been obtained through correlation against limited 
experimental data. A single set of resistance coefficients was 
found to give good agreement with mass flow measurements for 
an interference seal at pressure ratios up to 4. These coefficients 
did not give agreement with measured mass flow rates for a build 
clearance seal when it was assumed to be fully blown down. This 
suggests either a significant change in bristle packing for the 
blown down seal or incomplete blow down of the seal in the 
experiment. Clearly, there is scope for further investigations of 
both the resistance laws assumed and the behavior of build 
clearance seals. 

Calculations of bristle bending have shown that, for the 
particular seal studied, deflections in the axial direction are quite 
small. Larger deflections are seen in the orthogonal plane, with 
the aerodynamic forces tending to press the bristles against the 
shaft. This confirms the observations of Ferguson (1988). 
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Building on the basic approach presented here, further devel- 
opments of the model can be expected. For example, coupling of 
the bending calculation with the CFD solution so that the position 
of the bristle pack is calculated automatically is feasible. Testing 
against experimental data, and numerical investigation of differ- 
ent configurations are also clearly of interest and are in progress. 
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